• 首页 > 试卷题目 > 高中 > 高中数学>如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC.PF⊥CD.垂足分别为点E.F.连接AP.EF.给出下列四个结论:①AP=EF,②∠PFE=∠BAP,③PD=EC,④△APD一定是等腰三角形

如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC.PF⊥CD.垂足分别为点E.F.连接AP.EF.给出下列四个结论:①AP=EF,②∠PFE=∠BAP,③PD=EC,④△APD一定是等腰三角形

2021-08-27 03:01:53作者:黑骡子网 阅读量:32

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=数学公式EC;④△APD一定是等腰三角形.其中正确的结论有


  1. A.1个
  2. B.2个
  3. C.3个
  4. D.4个

试卷题目答案

C
分析:由四边形ABCD是正方形可以得出AB=BC=CD=AD,∠1=∠2=45°,作PH⊥AB于H,可以得出四边形BEPH为正方形,可以得出AH=CE,由条件可以得出四边形PECF是矩形,就有CE=PF,利用三角形全等可以得出AP=EF,∠PFE=∠BAP,由勾股定理可以得出PD=PF,可以得出PD=EC,点P在BD上要使△APD一定是等腰三角只有AP=AD、PA=PD或DA=DP时才成立,故可以得出答案.
解答:作PH⊥AB于H,
∴∠PHB=90°,
∵PE⊥BC,PF⊥CD,
∴∠PEB=∠PEC=∠PFC=90°.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠1=∠2=∠BDC=45°,∠ABC=∠C=90°,
∴四边形BEPH和四边形PECF是矩形,PE=BE,DF=PF,
∴四边形BEPH为正方形,
∴BH=BE=PE=HP,
∴AH=CE,
∴△AHP≌△FPE,
∴AP=EF,∠PFE=∠BAP,
故①、②正确,
在Rt△PDF中,由勾股定理,得
PD=PF,
∴PD=CE.
故③正确.
∵点P在BD上,
∴当AP=AD、PA=PD或DA=DP时△APD是等腰三角形.
∴△APD是等腰三角形只有三种情况.
故④错误,
∴正确的个数有3个.
故选C.

点评:本题考查了正方形的性质,正方形的判定,矩形的性质,勾股定理的运用,全等三角形的运用等多个知识点.
'); })();